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Abstract — The paper presents a theoretical analysis of a steady laminar flow and heat transfer over rotating

axisymmetric round-nosed bodies in which the effects of buoyancy force are taken into account. The

solutions of the governing equations are expressed in terms of series expansion. The numerical computations

are made for the case of rotating hemispheres, for = Gr/Re? ranging from 0 to oc and Prandt] numbers

Pr = 0.72 and 100. For the opposing flow case, the numerical results are presented only for small values of A.

Using the results obtained for the hemispheres, the buoyancy-force effects on flow and heat transfer over a
sphere are examined, including the effects on flow eruption.

NOMENCLATURE

reduced stream functions, defined in equa-
tions (13) and (39);

reduced stream functions, defined in equa-
tions (13) and (39);

acceleration due to gravity;

x-component of gravitational acceleration;
Grashof number, gf| T, — T, | L*/v;
function of x denotes the sine of the angle
between the acceleration vector and a nor-
mal to the surface of the body;
characteristic length;

Nusselt number, gL/k(Ty, — T,);

dg’

principal function, —
E

Prandtl number, v/a;
local wall heat flux;

o . 2K
principal function, ——;
r

radial distance from a surface element to the
axis of symmetry;

dimensionless term of r, r/L;

Reynolds number, U, L/v;

temperature;

dimensionless temperature, (T— T,)/

(T - T,);

velocity component in the x-direction;
dimensionless term of u, u/U_;
characteristic velocity;

velocity component in the y-direction;
dimensionless normalizing term of o,
Re'?v/U,;

velocity component in rotating direction;
dimensionless term of w, w/U ;

coordinate, measured from stagnation point
along the surface;

dimensionless term of x, x/L;

coordinate, measured normal to x;
dimensionless stretched term of y, Re'/2y/L;
coordinate, measured in rotating direction;

z, dimensionless term of z, z/L.

Greek symbols

a, thermal diffusivity;

B, thermal-expansion coefficient ;

n,#, transformed coordinate, defined in equa-
tions (13) and (39);

0,0, dimensionless temperature, (T — T,)/
(To — T.,);

A, dimensionless parameter, Gr/Re? ;

v, kinematic viscosity;

& E  transformed coordinate, defined in equa-
tions (13) and (39);

w, angular velocity;

T, wall frictional stress;

t,f,, dimensionless term of the x-component of

wall frictional stress, defined in equations
(54) and (55);

f,,1;, dimensionless term of the z-component of
wall frictional stress, defined in equations
(54) and (55).

1. INTRODUCTION

WHEN a surface is in contact with a fluid whose
temperature is different from the temperature of the
surface, a non-uniform temperature is established in
the fluid which can cause change in density. When the
‘external force field is present in the fluid, this density
changes, via the buoyant force, and may cause the fluid
to move relative to the surface. When the fluid is also in
motion relative to the surface induced by other means
such as mechanical work, the buoyancy effects may
influence the motion. For flows over submerged
bodies, these effects are well known[ 1-8], but for flows
engendered by rotating bodies, to the knowledge of the
author, only the investigation of Kreith[9] on a
rotating sphere where the surface temperature variesin
special way admitting the similarity solutions to the
momentum and energy equations, has dealt with the
buoyancy effects.

The laminar boundary-layer flow and heat transfer
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on rotating axisymmetric bodies in otherwise infinite
undisturbed fluid have been treated by many in-
vestigators[ 10-15], and recently for a more general
class of configurations by the author[ 16, 17], under the
assumption that the effects of buoyant force can be
neglected. However, the criterion to neglect the buoy-
ancy effects for such flows is still unknown. It is the aim
of the present paper to study the buoyancy effects on
flow engendered by rotating axisymmetric bodies of
uniform surface temperature. This study concerns
round-nosed bodies, while the sharp-nosed bodies will
be treated elsewhere. The difficulty of having a unified
mathematical treatment is due to the non-similarity
characteristic arising from the buoyant force-field, in
addition to the non-similarity characteristic from the
transverse curvature of the bodies.

To obtain the series solutions for the coupled
momentum and energy equations, the coordinate
transformation proposed by the author[16,17] has
been employed. The analysis is carried out for both
assisting flow (in which the buoyancy force acts in the
same direction as the forced flow) and opposing flow
(in which the buoyancy force acts in the opposite
direction to the forced flow). Finally, the series is
applied to rotating hemispheres. The results for both
assisting-flow and opposing-flow cases can be used to
predict the velocity and temperature fields on rotating
spheres. The influence of buoyancy forces on eruption
of boundary-layer flow is also discussed.

2. DEVELOPMENT OF BASIC EQUATIONS

Consideration is hereby given to the steady, laminar
boundary-layer flow over a rotating round-nosed
body of revolution with uniform surface temperature
Ty, situated in an infinite ambient fluid of undisturbed
temperature T, under a gravitational field which is
parallel to the axis of rotation. Let x, y, and z be anon-
rotating orthogonal curvilinear coordinate system
with the corresponding velocity components «, v, and
w, as shown in Fig. 1. If r is the radial distance from a
surface element to the axis of symmetry, under the
assumption of incompressible flow, negligible dissi-
pation and constant properties (except the density
changes which produce buoyancy forces), the govern-
ing boundary-layer equations are:

(m

= A
Gravily
tietd
T

X
Y
0

FiG. 1. The coordinate system.
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ow + ‘c"fw uw dr _ &w 3)
“a oy r odx oy*
6T+ oT w @
—— Uv— — a——
“ox dy ay?

Where §, v, « and T are respectively, the thermal
expansion coefficient, kinematic viscosity, thermal
diffusivity, and temperature of the fluid. g, is the x-
component of the local gravitational-acceleration vec-
tor in the direction of increasing x. For convenience of
further discussion, g, will be written as

9. = gK(x) (5)

where g is a positive constant having the dimension of
acceleration and K(x) is a nondimensional function of
x. In equation (2), the positive sign applies in the
assisting flow, whereas the negative sign applies in the
opposing flow. If the surface is faced downward, they

correspond to the case Ty > 7T, and T, < T,
respectively.
u=v=0 W=rw, T=T, aty=0

(6)

uw—0, T—>T, asy- x.

The conservation equations can be recast into a
dimensionless form by introducing a reference length L
and a reference velocity U, the appropriate stretched
coordinates, and the normalizing velocities and tem-
peratures as defined below,

X = x/L;
u=uflc;

where the Reynolds number Re = U_L/v. Accordingly,
equations (1)-(4) become

cu ot udr

=t =0, 8
ax &y Fdx ®)
_ou + oa o wrdr 2% + Gr KET 9)
u P o e — = - 7T,
8% AF  F dx 09 T Ré? & (
_Ow . W N aw df %W (10
Sl gl R T
"% &y F dx oy’ )
6T+ T PﬂézT (1
U -+ v —-=Pr'—,
ay &y oyt )
where Pr and Gr denote, respectively, the Prandtl
number v/a, and the Grashof number,

9B Ty — T | L3/v. If Lw is chosen as the reference
velocity, the boundary conditions are then

w=r;, T=1 atyjy=0,
(12}

uw—-0; T—-0 asy— ».
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The next step in the analysis is the transformation
from (%, ) coordinates to (&,%) coordinates. The
recent investigations of the author[16,17] for the
prediction of pure forced-convection boundary-layer
transfer suggest the following transformation of
variables.

x =2
§=L [F(x)]*dx; n=é)—m—y';

{13)
V&P, )
f(é’")'— (25)1/2 4 9(5,11)— (26)1/2 >
8, n) = T(x, 7)

where Y(%. y) and ¢(x, y) are dimensionless stream
functions, satisfy the continuity equation with
1oy —_ 0¢

= —=——; W=
Fox’

o

In terms of the new variables, the dimensionless
velocity components become

(14)

u=rf, (15)
§ = ,—2 2¢ of ‘2P(¢ 1 16
v o= (26)1/2 f+ é+”f( ()"" )’( )
w=ry (17)
where
2& dr
Pl)=— a (18)

In equations (15)—(17) and other equations which
follow, the primes denote partial differentiation with
respect to #. Using the foregoing transformations, the
momentum equations (9) and (10) and the energy
equation (11) become, respectively,

é(f’,
SIS = PO — g7 £ 1006 = 2¢ ;(,; nf))’
(19)
a '
S YO R
; 30.1)
P ip# e
r='8" + 10 256(5,:1} (21)
where
6r o ZKQ)
b=y 00 =25 @2)

with the boundary conditions

f=f=0; g=0=1 atn=0
(23)

f,¢.0-0 asny—o w.

For the case 4 = 0, equations {19)—(21) reduce to the
equations of pure-convection boundary-layer transfer
where the solutions may be found in{16,17].

As in[16,17], to obtain the series solutions,
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Gortler’s terminology of principal function for P(£)
and Q(£), will be employed in the present analysis. The
round-nosed bodies under consideration are supposed
to have the following expansion form

r(x) = x i X", (24)
n=0

Upon selecting r, as the reference length L, and since

= [1 - (KC)]H2 25

it follows that

K(®) =% K& (26)

n=0

where K, = 1,and forn > 0 K, depend onry,7y,..., 7,
Accordingly, the principal functions P({) can be
expanded as the following sereis

P+ X o
n=1
@n
r, will be under-

PO=}+ 3 P, Q@) =
a=1

The dependence of P, on rg,ry,...,
stood implicitly.

Now, having shown the form of the expansion for
the principal functions, we introduce the following
expansion for the other dependent variables

fE&n= Zof,,(n)f"“; g(&,n) = gog..(n)é"’z;

8 = L 0,me™. 28)
n=0

Substitution of these expansion forms into equations
{19)-(21), followed by collecting terms common to
equal power of &, we obtain a sequence of coupled sets

of ordinary differential equations. We have, for n = 0

A
o +fofo —2(f& — g5) +200_05 (29)
go' + fog5 — fog0 =0, (30)
Pr*l()o + Sy =0 31)

and forn>0

V4 fof i~ Dfofy (k DFSh+ gods £ 50,
=Ly, (32)

g +Jogn — (n+ 1)fogn + go S
0+ Dgbfy= M,y (39
Proi0 + folty — nfof, + (n + )05 £, = N,_1(34)

where L,_,, M,_,, and N, _, are defined by

- -—Pn(fo —gd) + 10,0, +

m=1
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M+ D S oom = 59uGn-m
—(m+ I)fmf;:—m + j’Qm()nwm]

n—=1 n—m

+ Y Y Pulfifnemei

m—1 i=1

gign—m4i)a (35)

M" 1_2Pf0g0+ Z [zpmg()fn m
(M + Vg fsom — (m + l)fmg

-1 n—
+ Zl Z 2P,gifn-m-i (36)

n-1

Nooy= 3 [M0pfrom~ (m+ 1)fpfn-]. (37
m=1
The boundary conditions are
fo=fo=0; go=0,=1;
fi=fu=0g,=0,=0 atn=0; (38)

f:ng;nen_’o as n - X,

For systems with ratio 1 = (Gr/R2) large, it is more
convenient to use 1/4 as an integration parameter. For
this purpose, we introduce the following new variables

fi&.m

E=g =2 JEH ="

(39)
GE& 7 =A%) BE ) =0(En).

In terms of the new variables, equations (19)—(21})
become, after transformation,

L7 1)

P47 = POU™ - 4717 £ 000 = 255,
(40)

~ ~ R )
"~ 2P '§ =2 —=—. 41
" +fg &fg SaEn (41)

) ax 2200, )
Pr-1g” g =2 = 42
r 7 L (42)
with

F=F'=0; §=0=1 ati=0,

(43)

7.6.6-0 asfj— .

For A — o0, all terms containing §', ¢ " and 4" vanish.
It is seen that equations (40) and (42) are similar to
those of Lin and Chao[ 18] in their study of boundary-
layer transfer in free convection.

Using the same procedure as for the case of small 4,
we can obtain the ordinary differential equations for
functional coefficients when the new dependent vari-
ables are expanded similar to that of (28). They are

+7of —IfE-4gH £18,=0, 44)
o +7d6—fodo=0, (45)
Pr"§0 + ol =0 (46)
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and
Tw+fofn=tn+ Ofofn+ 7 "G0G0 30, = L,y
(47)
gr + fogn — (n + DFodn + gof
+ (4 1)gofo=M,_,, (48)
P8, + B — nfofu+ (n+ VOGS = Nooy,
(49)
where
L, =P(J-2"ghH+ 00
n—1
+ Z [Pm(fé)f:-—m_"-lggﬂgm m}
i1t
+(m+2)f ]n m T . 2 gmgn m
]mfn m — Qm n- m]
n—1 n—m
+Z ZPM[]fnml_ _Ié:g;mt]
m=1 i=1
(503

n—1

+ Y [2Pugofi-n+
m=1

(m+ Dfugn-m]

n—1 n—m

+ Z Z 2Pmééf;—m~i= (51)

m=1 i=1

n-1
Nn*l = Z [mgmf:l—m—
m=1

M,_, =2P,fods
m+ Dgmfnem—

m+ 1)fbn-n]. (52)

with the boundary conditions
Jo=Ffo=0: go=0,=1:
Fi=Fi=08,=0 atij=0

fmgo» 0“*0 f;pw

(53)

G,-0 asi-— =%

3. WALL FRICTIONAL-STRESS AND
WALL HEAT-FLUX
In technological applications, it is often the wall
frictional-stress and wall heat-flux that are of the
greatest interest. In dimensionless terms, the com-
ponents of local frictional stress for small values of 4
are given by

7,Re'?? 73 on
= Loy (287, Z SO
54
7,Re'? P2z 9
T, = = Z 902,

plLoy (287

wherein p is the density of the fluid. In terms of the
variables for large values of 4, they are

7. Rel? x
~ = X i " O n/2,
= twre g 5,0

55
. 7,Ret?? P " 9
?"1 = p(m)z;ﬁﬂ = (2:)1 /2 Le (O)g



Buoyancy effects on flow and heat transfer

The torque created by the frictional stress at the wall
can be obtained by integrating the z-component of
local frictional stress over the surface. In dimensionless
term, for small values of A that is

_ MRe'? T
M ¢ - ZnJ P1,d%
V]

where x,, is the maximum value of x for the body. And
for large values of 1

M = S f 7 7,dx.
The local-wall heat-flux may be written in the form of a
Nusselt number as

(56)

(57

Nu _ qL 72 ’ n/2
Re'® "Rk, - T.) (&7 2 Z 000
(58)
or
Nu qL 111/4-2 kg
= 0 n/2
R~ RFRT, — T~ @@ &, O°
(59)

and k denotes the thermal conductivity of the fluid.

4. APPLICATION TO A ROTATING HEMISPHERE

As an example, in this section, we discuss the
application of the results to the case of a rotating
hemisphere. Under consideration is a hemisphere of
radius R oriented parallel with respect to the gravi-
tational vector g. Upon selecting R as the reference
length L, the following relationships can be readily
established :

A%) = K(X) = sin %, (60)
§=E=°°;3’E—cosf+§, 61)
Pi= =g Pi=—zii Pa= o (6)
0=h G=r: Oi=ar (@)

Using these values, the equations (29)—(34) with the
boundary conditions (38) have been numerically in-
tegrated up to four terms following the
Runge-Kutta—Merson (RKM) procedure for
Pr =0.72 and 100 and 11 values of small 1 ranging
from 0 to 1, and similarly for large values of A, the
parameters of integration being A~ ! ranging from 0 to
1. A tabulation of the appropriate wall derivatives of
the functional coefficients are given in Tables 1 and 2.
For the opposing-flow case, the numerical com-
putations are made only for A = 0.1 and Pr =1 and
100 due to the difficulty caused by the fact that for
sufficiently large values of 4, the shear stress at the wall
will vanish. Under this condition the separation of
boundary layers will occur and the classical boundary-
layer analysis will cease to apply.
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It should be noted that, for L = 0 and A = oo, the
results can be used to analyse the boundary-layer
transfer on a rotating sphere for pure forced-
convection and pure free-convection, respectively. For
both cases, the results on Nusselt numbers agree with
analytical studies made by other investigators (see for
example [11, 14,15, 17] for pure forced convection and
[18, 19] for pure free convection).

Representative velocity profiles at selected axial
locations x = 7/6, n/3, and n/2, for several parametric
values 4 are illustrated in Figs. 2 and 3 in which the
dimensionless velocity components i and w are plotted
against 7 to show the effects of buoyancy force on the
boundary layer. It is seen that the flow boundary-layer
thickness decreases as A increases, and is accompanied
by a relatively sharp rise in the velocity profiles. The
temperature profiles at these three selected locations
and for the same variation of parametric values A are
shown in Fig. 4. An inspection of the figure reveals that
as the buoyancy force effect 4 increases the tempera-
ture gradient at the wall increases but the thermal
boundary-layer thickness decreases.

5. APPLICATION TO A ROTATING SPHERE

A major interest of the present investigation is in the
analysis of the buoyancy-force effects on flow and
thermal boundary-layer on a rotating sphere. When
the axis of rotation is parallel to the direction of
gravitational force, the buoyancy-force effects make
the flow and thermal boundary-layer non-symmetric
with respect to the equator. Hence, the analysis of the
flow and thermal boundary-layer is different from that
of pure forced-convective flow, or from that of pure
natural-convective flow which has only one direction
for the main flow.

For the present case, the determination of flow- and
heat-transfer characteristic is to apply the results
obtained for a hemisphere for both cases, the assisting
and the opposing flow. The assisting-flow case should
be applied to the lower part of the sphere, if the sphere
is heated or the upper part if the sphere is cooled,
whereas the opposing-flow case is applied to the upper
part for the heated-surface case or the lower part for
the case of cooled surface. It should be noted in the
present case, that the validity region for application of
the results is not symmetrical due to the displacement
of the eruption point caused, by the buoyancy force
effects. Thus, the first step, before the results of
calculation for hemisphere are used, is to determine the
point where the eruption occurs. As in the case of pure
forced-convective flow, the eruption point of flow can
be determined by finding the point where the x-
component of local-wall frictional-stress has the same
magnitude but with the opposite direction. For pure
forced-convective flow, the eruption occurs at the
equator. Figure 5 shows the plots of the x-component
of local-wall frictional-stress on a sphere for pure
forced-convective flow and for 4 = 0.1 with Prandtl
numbers Pr = 1 and 100 showing the effects of buoy-
ancy force on flow eruption.
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FI1G. 5. Dimensionless x-component of local wall friction on a sphere surface.

Having known the validity region for application of
the results obtained in analyzing the buoyancy force
effects on a rotating hemisphere, the local Nusselt
numbers can now be determined and these are shown
in Fig. 6. If x, denotes the eruption point, the torque
due to the friction force can be calculated from

U 1, |,d% +J 'fzf,|_Ade
0 0

(64)

and similarly, the total heat transfer from the sphere
surface is

0= anZU "Fql,d% + f 'fzq;ddx*].(ss)
4] Q

For the case where A is sufficiently large, it is possible
that the separation occurs not due to the collision of
flow but due to the vanishing of the local shear stress at
the wall. In this case the equation (64) cannot be
applied without further analysis.

6. CONCLUSIONS

In this paper, the effects of buoyancy force on
laminar flow and heat transfer over rotating axisym-
metric round-nosed bodies are analysed by employing
a Gortler type series of solutions. As an example, the
series have been applied to the case of rotating
hemispheres and using these results the buoyancy-
force effects on a rotating sphere are examined,
including the effects on the eruption of flow due to
geometrical symmetry of the spheres. From the obser-
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FiG. 6(a). Local Nusselt number on a sphere surface for 1 = 0.1 and Pr = 0.72.
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F1G. 6(b). Local Nusselt number on a sphere surface for A = 0.1 and Pr = 100.

vation of the numerical results for rotating hemi-
spheres, it is seen that the effects of buoyancy force are
more significant for flow engendered by rotating
bodies than for flows over submerged bodies.
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EFFETS DE LA GRAVITATION SUR ECOULEMENT ET LE TRANSFERT
DE CHALEUR SUR DES CORPS RONDS AXISYMMETRIES
TOURNANTS

Résumé — On etudie théoriquement I'écoulement et le transfert de chaleur en regime laminair permament
sur des corps ronds axisymmetries tournants en tenant compte les effets de la gravitation. Les solutions des
équations gouvernant I’écoulement et le transfert de chaleur sont données sous formes de séries. Les calculs
numeriques sont faites pour les hemisphéres tournantes, pour 2 = Gr/Re? varicentre O et x et les nombresde
Prandtl Pr = 0.72 et 100. Pour le cas d’ecoulement opposant, les resultats numeriques sont donnés seulement
pour / petits. En utilisant ces résultats, on etudie également les effets de la gravitation sur Pécoulement et le
transfert de chaleur sur une sphére tournante y compris les effets sur éruption d’écoulement.
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AUFTRIEBSWIRKUNG AUF STROMUNG UND WARMESTROM AN
ROTIERENDEN, ACHSENSYMMETRISCHEN KORPERN MIT
ABGERUNDETER NASE

Zusammenfassung—Die Abhandlung beschreibt eine theoretische Untersuchung der ausgebildeten Lami-
narstrdmung und des Wirmeiibergangs an rotierenden, achsensymmetrischen Korpern mit abgerundeter
Nase, wobei Auftriebskrifte mit in Rechnung gestellt werden. Die Losungen der Hauptgleichungen werden
in Form von Reihenentwicklungen ausgedriickt. Die zahlenmiBigen Berechnungen wurden fiir den Fall von
rotierenden Halbkugeln bei Lambda-Zahlen (1 = Gr/Re?) im Bereich von Null bis unendlich und bei
Prandtl-Zahlen (Pr) im Bereich von 0,72 bis 100 durchgefiihrt. Fiir den Fall entgegengerichteter Stromung
werden die zahlenmiBigen Ergebnisse nur fir kleine Werte von Lambda angegeben. Mit Hilfe der
Ergebnisse, die bei der Halbkugel erhalten wurden, werden die Auftriebseinfliisse auf Strémung und
Wirmestrom an einer Kugel unter EinschiuB ihrer Wirkung auf die Stromungsablosung untersucht.

BJIMAHHUE NOABEMHBIX CUJ1 HA TEYEHUE U TEMJIONEPEHOC HA
BPAIAIOTHUXCSA OCECUMMETPHUUYHBIX TEJAX C KPYIJOW HOCOBOWM YACTHIO

Aunotaums — [IpopencH TEOPETHYECKHH 4HAJIM3 CTALMOHAPHOIO JAMHMHAPHOIO TEYEHHS M TEIJIO-
NIepeHOCa Ha BPAIUAIOUIMXCA OCECHMMETPHUYHBIX TEaX C YYETOM BAMAHHA NOABEMHBIX cHi. OCHOBHBIE
YPaBHEHHsS DpeilleHbl C NOMOLILIO pasnoxenus B paja. ITodyueHbl 4WHC/ICHHbIC PELICHHS 1A BPAllia-
tommxcs nonycdep npu A =Gr/Re® B nuanaione oT 0 [0 o0 H APH 3HAYEHHAX WHCIA [lpauatns,
pasubix 0,72 1 100. [lns ciy4as BCTPEYHOTO TEYCHHSA YHCIICHHBIE DELICHHN NPEACTABACHBI TOIBLKO
VIR ManbIX 3HaueHHH A. Ha OCHOBaHMH pe3yibTaToB, MONIYMEHHBIX % NOAYCep., HCCIEA0BaNoCh
BJIHSHHE NOJBCMHBIX CHII HA TEYCHHE U TENJIONEPEHOC OKOMNO Cephl, & TAKXKE HA CPbIB NOTOKA.
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