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Abstract ~~ The paper presents a theoretical analysis of a steady laminar flow and heat transfer over rotating 
axisymmetric round-nosed bodies in which the effects of buoyancy force are taken into account. The 
solutions of the governing equations are expressed in terms of series expansion. The numerical computations 
are made for the case of rotating hemispheres, for 1 = Gr/Re’ ranging from 0 to CC and Prandtl numbers 
Pr = 0.72 and 100. For the opposing flow case, the numerical results are presented only for small values of i. 
Using the results obtained for the hemispheres, the buoyancy-force effects on flow and heat transfer over a 

sphere are examined, including the effects on flow eruption. 

NOMENCLATURE Z, dimensionless term of z, z/L. 

J.z reduced stream functions, defined in equa- 

tions (13) and (39); 
Greek symbols 

9, I, reduced stream functions, defined in equa- a, thermal diffusivity; 

tions (13) and (39); B, thermal-expansion coefficient ; 

87 acceleration due to gravity; rl> ri> transformed coordinate, defined in equa- 

Bx, x-component of gravitational acceleration ; tions (13) and (39); 

GJ-, Grashof number, gfi 1 To - T, 1 L3/v; 0, & dimensionless temperature, (T - TX )/ 

K(x), function of x denotes the sine of the angle (T, - T,); 
between the acceleration vector and a nor- 
ma1 to the surface of the body; 
characteristic length ; 
Nusselt number, gL/k(T, - T,); 

principal function 5 g 
’ r dt’ 

Prandtl number, v/cc; 

local wall heat flux; 

principal function, 7 ; 

A, dimensionless parameter, Gr/Re’ ; 
V, kinematic viscosity ; 
[,r, transformed coordinate, defined in equa- 

tions (13) and (39); 

0, angular velocity; 

7, wall frictional stress ; 
_ _ 
7,7X, dimensionless term of the x-component of 

wall frictional stress, defined in equations 

(54) and (55); 
fz,fz, dimensionless term of the z-component of 

wall frictional stress, defined in equations 

radial distance from a surface element to the (54) and (55). 

axis of symmetry; 

dimensionless term of r, r/L; 1. INTRODUCTION 

Reynolds number, U,L/v; WHEN a surface is in contact with a fluid whose 

temperature; temperature is different from the temperature of the 

dimensionless temperature, (T - TX )/ surface, a non-uniform temperature is established in 

(T, - TX); the fluid which can cause change in density. When the 

velocity component in the x-direction; .external force field is present in the fluid, this density 

dimensionless term of u, u/U,; changes, via the buoyant force, and may cause the fluid 

characteristic velocity; to move relative to the surface. When the fluid is also in 

velocity component in the y-direction; motion relative to the surface induced by other means 

dimensionless normalizing term of u, such as mechanical work, the buoyancy effects may 

Re’!‘v/U,; influence the motion. For flows over submerged 

velocity component in rotating direction; bodies, these effects are well known[ l-81, but for flows 

dimensionless term of w, w/U,; engendered by rotating bodies, to the knowledge of the 
coordinate, measured from stagnation point author, only the investigation of Kreith[9] on a 
along the surface; rotating sphere where the surface temperature varies in 
dimensionless term of x, x/L; special way admitting the similarity solutions to the 

coordinate, measured normal to x; momentum and energy equations, has dealt with the 
dimensionless stretched term of y, Re”‘y/L; buoyancy effects. 
coordinate, measured in rotating direction ; The laminar boundary-layer flow and heat transfer 
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on rotating axisymmetric bodies in otherwise infinite 
undisturbed fluid have been treated by many in- 
vestigators[lO-151, and recently for a more general 
class ofconfigurations by the author[ 16,171, under the 
assumption that the effects of buoyant force can be 
neglected. However, the criterion to neglect the buoy- 
ancy effects for such flows is still unknown, It is the aim 
of the present paper to study the buoyancy effects on 
flow engendered by rotating axisymmetric bodies of 
uniform surface temperature. This study concerns 
round-nosed bodies, while the sharp-nosed bodies will 
be treated elsewhere. The difficulty of having a unified 
mathematical treatment is due to the non-simiiarity 
characteristic arising from the buoyant force-field, in 
addition to the non-similarity characteristic from the 
transverse curvature of the bodies. 

To obtain the series solutions for the coupled 
momentum and energy equations, the coordinate 
transformation proposed by the author[l6,17] has 
been employed. The analysis is carried out for both 
assisting flow (in which the buoyancy force acts in the 
same direction as the forced flow) and opposing flow 
(in which the buoyancy force acts in the opposite 
direction to the forced flow). Finally, the series is 
applied to rotating hemispheres. The results for both 
assisting-flow and opposing-flow cases can be used to 
predict the velocity and temperature fields on rotating 
spheres. The influence of buoyancy forces on eruption 
of boundary-layer flow is also discussed. 

2. DEVELOPMENT OF BASK EQUATIONS 

Consideration is hereby given to the steady, laminar 
boundary-layer flow over a rotating round-nosed 
body of revolution with uniform surface temperature 
T,, situated in an infinite ambient fluid of undisturbed 
temperature T, under a gravitational field which is 
parallel to the axis of rotation. Let X, ,v, and 2 be anon- 
rotating orthogonal curvilinear coordinate system 
with the corresponding velocity components U, r, and 
w, as shown in Fig. 1. If r is the radial distance from a 
surface element to the axis of symmetry, under the 
assumption of incompressible flow. negligible dissi- 
pation and constant properties (except the density 
changes which produce buoyancy forces), the govern- 
ing boundary-layer equations are : 

FIG. 1. The coordinate system 

7 8W uw dr 72 , 
n’“o + c-___ + __ _ = vfl: 
iiX s, r dx i3y2 ’ 

Where p, v, e and T are respectively, the thermal 
expansion coefIicient, kinematic viscosity, thermal 
diffusivity, and temperature of the fluid. g, is the x- 
component of the local gravitational-acceleration vec- 
tor in the direction of increasing x. For convenience of 
further discussion, gX will be written as 

g, = gK(.x) (5) 

where g is a positive constant having the dimension of 
acceleration and K(x) is a nondimensional function of 
x. In equation (2), the positive sign applies in the 
assisting flow, whereas the negative sign applies in the 
opposing flow. If the surface is faced downward, they 
correspond to the case To > TX and To < T,, 
respectively. 

u=l)=O, W=rw, T=T, aty=O 

(6) 
U,W -+ 0, T-t T, as y -+ Y_. 

The conservation equations can be recast into a 
dimensionless form by introducing a reference length L 
and a reference velocity U,, the appropriate stretched 
coordinates, and the normalizing velocities and tem- 
peratures as defined below, 

X = .x/L; ? = r/l,; T = Re’ ‘y/L; 

U= u/U,; C= Re j ‘~wu,; b+ = w/u,; (7) 

??= (T- T,)/(T, - T,) 

where the Reynolds number Re = ui,Ljv. Accordingly, 
equations (l)-(4) become 

(10) 

where Pr and Gr denote, respectively, the Prandtl 
number VI% and the Grashof number, 
gp 1 T, - TX 1 L3/v. If L w is chosen as the reference 
velocity, the boundary conditions are then 

rj=~=O; w=r; T=l atj=O, 

&W-+0; T-0 asj-+;f. 
(12) 
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The next step in the analysis is the transformation 
from (4 y3 coordinates to (<,q) coordinates. The 
recent investigations of the author[l6,17] for the 
prediction of pure forced-convection boundary-layer 
transfer suggest the following transformation of 
variables. 

(13) 

where J/(2. jj) and 4(X, j) are dimensionless stream 
functions, satisfy the continuity equation with 

In terms of the new variables, the dimensionless 
velocity components become 

U=FF, (15) 

ts= -& 
[ 

f+ 2e$+ r?f’(2P(<) - 1) 1 , (16) 

where 

In equations (15)-(17) and other equations which 
follow, the primes denote partial differentiation with 
respect to PI. Using the foregoing transformations, the 
momentum equations (9) and (10) and the energy 
equation (11) become, respectively, 

f”’ -tff” - P(r,(f’2 - g’2) f nQ(<)e = 2r$+, 

’ (19) 

aw f-1 g”’ + fg” - 2P(<) f’g’ = 25 - , 
w, tl) 

ww 
Pr-‘8” +fg=25a(;,q) 

(20) 

(211 

where 

with the boundary conditions 

f=f’=O; g=f?=l atq=O 

(23) 

For the case 1 = 0, equations (19)-(21) reduce to the 
equations of pure-convection boundary-layer transfer 
where the solutions may be found in[16,17]. 

As in[lCi, 171, to obtain the series solutions, 

Gortler’s terminology of principal function for P(r) 
and Q(C), will be employed in the present analysis. The 
round-nosed bodies under consideration are supposed 
to have the following expansion form 

r(x) = x f rnx2Y (24) 
n=O 

Upon selecting rg as the reference length L, and since 

$ = [l - (K(x))2]“2 (25) 

it follows that 

K(i) = X f K,Z’” (26) 
n=O 

where K, = 1, and for n > 0 K, depend on ro, rlr . . ., r,. 
Accordingly, the principal functions P(c) can be 
expanded as the following sereis 

P(t) = + + f P,,ei2 ; Q(t) = f + f Q,,r”“. 
II=1 “=I 

(27) 

The dependence of P, on ro,rl,.. .,r, will be under- 
stood implicitly. 

Now, having shown the form of the expansion for 
the principal functions, we introduce the following 
expansion for the other dependent variables 

Substitution of these expansion forms into equations 
(19)-(21), followed by collecting terms common to 
equal power of 5, we obtain a sequence of coupled sets 
of ordinary differential equations. We have, for n = 0 

fb” +faf;; - f(f2 - g:) + $I0 = 0, (29) 

sb” f fog;; - fbsb = 0, (30) 

Pr- ‘8; + f& = 0 (31) 

and for n > 0 

f,‘+fc.f:-(rr+l)fb~+(n+l)f61;.+ebs:~~e. 

= &-,, (32) 

s: +&Is.” - (n + l)fbgb + sbf:, 

+ (n + 1M.L = M,-1, (33) 

Pr-‘0; + fo8:, - nf@. + (n + i)e;f. = IV,_ ,(34) 

where L,_l, Mm_,, and N,_, are defined by 

L,- 1 = P,(f;: - sbzf I!z @n@, + 
n--l 

+ c EPln(fbf’,-m - s’os:-mf 
lR=* 



+ tm + t)fbf:, - m - !fsds:, - m 

- cm + lffmfLm rt ad"-*1 

n-, n-m 

+ mz, iJil Pm(flfk-m-i - Sign-m-i)2 (35) 

n-l 

M,-1 = 2PJbgb + c [2P,gbfn_, -t- 
m--l 

im + l)G:Sb-m - (m + 1)s,G,“-,I 

n-1 n-m 

+ C C 2PmGff:-m-i (36) 
m=L i=1 

“-1 

N,-, = 1 [m%fh-, - (m + ~U2L,l. (37) 
m=i 

The boundary conditions are 

&=fb=O; gb=f&=l; 

f”=f;=g:,=e”=o atrJ=o; (38) 
fL,gi, @,+ 0 as rj -+ x ; 

For systems with ratio A = (Gr/Rz) large, it is more 
convenient to use l/A as an integration ~rameter. For 
this purpose, we introduce the following new variables 

fGv1 
S=r; d=A1’4V; fRit)=~; 

(39) 
S(E ri) = n’:4g(5, vl); &E ri 1 = et, ?I. 

In terms of the new variables, equations (19)-(21) 
become, after transformation, 

jRI +p - P(&fr2 - I- $p) & Q(&7 = 2;$+. 

‘(40) 

with 

f=f’=O; G=e=l atrjzo, 

(43) 
f’, 6’. &+O as rj-+ Y,. 

For I + S, all terms containing @ ‘, 6 ” and @ “’ vanish. 
It is seen that equations (40) and (42) are similar to 
those of Lin and Chao[ 181 in their study of boundary- 
layer transfer in free convection. 

Using the same procedure as for the case of small A., 
we can obtain the ordinary differential equations for 
functional coefficients when the new dependent vari- 
ables are expanded similar to that of (28). They are 

~~+jbfb:-:(fb’-n-‘~bZ)+fe,=o, (44) 

@‘d’ +7&G -f& = 0, (45) 

Pr-‘8;; +jb&J = 0 W) 

- (m + l)f,,$-, + Q,k,l 
n-, n--m 

+ 2 C Pm[fifn-m-i - i-‘~$“_,_i]* 
m=1 i=l 

(50) 
n-1 

(m + l)@$:_, - (m + l&g:_,] 

+ 1 1 2P&jIfA-,-i* (51) 
m=i i-l, 

n-1 
fl,,-, = c [m~,,,~~_,,, - (m + l)j’,t?~_,,,], (52) 

m=l 

with the boundary conditions 

3. WALL FRICTIONAL-STRESS AND 
WALL HEAT-FLUX 

In technological applications, it is often the wall 
frictional-stress and wall heat-flux that are of the 
greatest interest. In dimensionless terms, the com- 
ponents of local frictional stress for small values of A 
are given by 

wherein p is the density of the fluid. In terms of the 
variables for large values of A. they are 
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The torque created by the frictional stress at the wall 
can be obtained by integrating the z-component of 
local frictional stress over the surface. In dimensionless 
term, for small values of i that is 

a=-= MRtF2 2= 

pL4w2 s ‘mr“‘i dx  

I (56) 
0 

where x, is the maximum value of x for the body. And 
for large values of 1 

The local-wall heat-flux may be written in the form of a 
Nusselt number as 

NU qL 
Re”Z = Re1'2k(To - T,) = 

or 

(58) 

Nu qL 
__ = Re"'k(T, - T,) = Re’12 

(59) 

and k denotes the thermal conductivity of the fluid. 

4. APPLICATION TO A ROTATING HEMISPHERE 

As an example, in this section, we discuss the 
application of the results to the case of a rotating 
hemisphere. Under consideration is a hemisphere of 
radius R oriented parallel with respect to the gravi- 
tational vector g. Upon selecting R as the reference 
length L, the following relationships can be readily 
established : 

f(X) = K(Z) = sin X, (60) 

<+cos’~ 2 

3 -cosx+? (61) 

Pi=_;; p,= _;; P3=$ (62) 

Q,=+; Q2=;; Q,=&& (63) 

Using these values, the equations (29)-(34) with the 
boundary conditions (38) have been numerically in- 
tegrated up to four terms following the 
Runge-Kutta-Merson (RKM) procedure for 
Pr = 0.72 and 100 and 11 values of small I ranging 
from 0 to 1, and similarly for large values of 1, the 
parameters of integration being 1- ’ ranging from 0 to 
1. A tabulation of the appropriate wall derivatives of 
the functional coefficients are given in Tables 1 and 2. 
For the opposing-flow case, the numerical com- 
putations are made only for 1 = 0.1 and Pr = 1 and 
100 due to the difficulty caused by the fact that for 
sufficiently large values of 1, the shear stress at the wall 
will vanish. Under this condition the separation of 
boundary layers will occur and the classical boundary- 
layer analysis will cease to apply. 

It should be noted that, for I = 0 and A = co, the 
results can be used to analyse the boundary-layer 
transfer on a rotating sphere for pure forced- 
convection and pure free-convection, respectively. For 
both cases, the results on Nusselt numbers agree with 
analytical studies made by other investigators (see for 
example [ll, 14,15,17] for pure forced convection and 
[18, 191 for pure free convection). 

Representative velocity profiles at selected axial 
locations X = x/6, n/3, and n/2, for several parametric 
values i are illustrated in Figs. 2 and 3 in which the 
dimensionless velocity components U and Ware plotted 
against r~ to show the effects of buoyancy force on the 
boundary layer. It is seen that the flow boundary-layer 
thickness decreases as i increases, and is accompanied 
by a relatively sharp rise in the velocity profiles. The 
temperature profiles at these three selected locations 
and for the same variation of parametric values 1 are 
shown in Fig. 4. An inspection of the figure reveals that 
as the buoyancy force effect 3. increases the tempera- 
ture gradient at the wall increases but the thermal 
boundary-layer thickness decreases. 

5. APPLICATION TO A ROTATING SPHERE 

A major interest of the present investigation is in the 
analysis of the buoyancy-force effects on flow and 
thermal boundary-layer on a rotating sphere. When 
the axis of rotation is parallel to the direction of 
gravitational force, the buoyancy-force effects make 
the flow and thermal boundary-layer non-symmetric 
with respect to the equator. Hence, the analysis of the 
flow and thermal boundary-layer is different from that 
of pure forced-convective flow, or from that of pure 
natural-convective flow which has only one direction 
for the main flow. 

For the present case, the determination of flow- and 
heat-transfer characteristic is to apply the results 
obtained for a hemisphere for both cases, the assisting 
and the opposing flow. The assisting-flow case should 
be applied to the lower part of the sphere, if the sphere 
is heated or the upper part if the sphere is cooled, 
whereas the opposing-flow case is applied to the upper 
part for the heated-surface case or the lower part for 
the case of cooled surface. It should be noted in the 
present case, that the validity region for application of 
the results is not symmetrical due to the displacement 
of the eruption point caused, by the buoyancy force 
effects. Thus, the first step, before the results of 
calculation for hemisphere are used, is to determine the 
point where the eruption occurs. As in the case of pure 
forced-convective flow, the eruption point of flow can 
be determined by finding the point where the x- 
component of local-wall frictional-stress has the same 
magnitude but with the opposite direction. For pure 
forced-convective flow, the eruption occurs at the 
equator. Figure 5 shows the plots of the x-component 
of local-wall frictional-stress on a sphere for pure 
forced-convective flow and for i = 0.1 with Prandtl 
numbers Pr = 1 and 100 showing the effects of buoy- 
ancy force on flow eruption. 
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Frc;. Z(a). Dimensionkss transversal velocity profile U at X = n/6 for various values of i. 
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FIG. 2(c). 
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FIG. 3(a). Dimensionless circumferential velocity profile (s at zi = n/6 for various values of 1. 
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FIG. 3(b). Dimensionless circumferential velocity profile 0 at 1= n/3 for various values of 1. 
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Frc;. 3(c). Dimensionless circumferential velocity profile 0 at 2 = n/2 for various values of 1. 
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FIG. 4(a). Dimensionless temperature profile B at X = x/6 for various values of 1. 
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FIG. 4(b). Dimensionless temperature profile 0 at x‘ = n/3 for various values of 1. 
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FIG. 4(c). Dimensionless temperature profile B at X = n/2 for various values of i.. 
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0 01 0.2 0.3 0.4 

FIG. 5. Dimensionless x-component of 

Having known the validity region for application of 
the results obtained in analyzing the buoyancy force 
effects on a rotating hemisphere, the local Nusselt 
numbers can now be determined and these are shown 
in Fig. 6. If x, denotes the eruption point, the torque 
due to the friction force can be calculated from 

and similarly, the total heat transfer from the sphere 
surface is 

0.5 0.6 0.7 0.8 0.9 10 

X/T 
Local wall friction on a sphere surface. 

For the case where I is su~ciently large, it is possible 
that the separation occurs not due to the collision of 
flow but due to the vanishing of the local shear stress at 
the wall. In this case the equation (64) cannot be 
applied without further analysis. 

6. CONCLUSIONS 

In this paper, the effects of buoyancy force on 
laminar flow and heat transfer over rotating axisym- 
metric round-nosed bodies are analysed by employing 
a Gijrtler type series of solutions. As an example, the 
series have been applied to the case of rotating 
hemispheres and using these results the buoyancy- 
force effects on a rotating sphere are examined, 
including the effects on the eruption of flow due to 
geometrical symmetry of the spheres. From the obser- 

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0 
i/n 

FIG. 6(a). Local Nusselt number on a sphere surface for 1 = 0.1 and Pr = 0.72. 

rt.M.T. ?3ih- F 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 10 
X/T 

FIN;. 6(b). Local Nusselt number on a sphere surface for i = 0.1 and Pr = 100. 

vation of the numerical results for rotating hemi- 
spheres, it is seen that the effects of buoyancy force are 9. 

more significant for flow engendered by rotating lo. 

bodies than for flows over submerged bodies. 
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EFFETS DE LA GRAVITATION SUR L’ECOULEMENT ET LE TRANSFERT 
DE CHALEUR SUR DES CORPS RONDS AXISYMMETRIES 

TOURNANTS 

RCsumb ~ On etudie thioriquement I’koulement et le transfert de chaleur en regime laminair permament 
sur des corps ronds axisymmetries tournants en tenant compte les effets de la gravitation. Les solutions des 
iquations gouvernant l’&coulement et le transfert de chaleur sont donnees sous formes de slries. Les calculs 
numeriques sont faites pour les hemisphtres tournantes, pour i, = Gr/Re’ varie entre 0 et x et les nombres de 
Prandtl Pr = 0.72 et 100. Pour le cas d’ecoulement opposant, les resultats numeriques sont donnts seulement 
pour i petits. En utilisant ces rCsultats, on etudie Cgalement les effets de la gravitation sur I’&coulement et le 
transfert de chaleur sur une sphire tournante y compris les effets sur truption d’bcoulement. 
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AUFTRIEBSWIRKUNG AUF STROMMUNG UND WARMESTROM AN 
ROTIERENDEN, ACHSENSYMMETRISCHEN KGRPERN MIT 

ABGERUNDETER NASE 

Zusammenfassung-Die Abhandlung beschreibt eine theoretische Untersuchung der ausgebildeten Lami- 
narstromung und des Warmetibergangs an rotierenden, achsensymmetrischen Korpern mit abgerundeter 
Nase, wobei Auftriebskrafte mit in Rechnung gestellt werden. Die Losungen der Hauptgleichungen werden 
in Form von Reihenentwicklungen ausgedriickt. Die zahlenm%Digen Berechnungen wurden fiir den Fall von 
rotierenden Haibkugeln bei Lambda-Zahlen (i. = Gr/Re2) im Bereich von Null bis unendlich und bei 
Prandtl-Zahlen (Pr) im Bereich von 0,72 bis 100 durchgef~hrt. Fur den Fall entgegengerichteter Str~mung 
werden die ~hIenm~Bigen Ergebnisse nur fur kleine Werte von Lambda angegeben. Mit Hilfe der 
Ergebnisse, die bei der Halbkugel erhaiten wurden, werden die Auftriebsein~~sse auf Str~mung und 

Wiirmestrom an einer Kugel unter Einschtug ihrer Wirkung auf die Striimungsabkkung untersucht. 

BJIMIIHME IIOjTBEMHbIX CMJI HA TEHEHHE M TEHJIOI-IEPEHOC HA 
BPAIQAIO~WXCII OCECMMMETPMYHbIX TEJIAX C KPYI-JlOn HOCOBOfi 9ACTbKl 

AHHOTZIUESI - IlpoeeneH Teopewiecxeir anann craurioriapnoro naMnnapnor0 reqenns n renno- 
nepeHoca Ha spawalomaxcn ocecxw4eTpwnibix renax c yserohr 8nunHHfl nonbewibix cm. OcHoBHbIe 

ypaszieH= pe.meHbi c nohfo4bw pa3noxreHwi a pnn. IlonyseHbr rHcnewbre pemeawn nnn spama- 

Iomfixc~~ ROnyC@ep npH 2. =Gt/Re’ B Arrana3oHe OT 0 no s N npii 3Har(eHYIRX wcna fIpafinrnna, 
paanbrx 0,72 w 100. Ana c.rIyrar ~c~peqHOr0 Teqemx q~c~eHH~e pemefim n~AcTaanea~ Tonbxo 

AJIX MaJIbIX 3HaqeH~~ i. Ha OCXOBaHHil p3yJlbTaTOB. nOnyqeHH~X AnX MN8yCtpep. ~CC~e~OBa~~b 

anw3HHe non%hfHbrx cm Ha Tesesae w rennonepenoc oxono c+epbi, a TaKxe na cpbrs noTorta. 


